Robust biopolymer based ionic-covalent entanglement hydrogels with reversible mechanical behaviour
نویسندگان
چکیده
Emerging applications of hydrogels such as soft robotics and cartilage tissue scaffolds require hydrogels with enhanced mechanical performance. We report the development of a robust biopolymer based ionic-covalent entanglement network hydrogel made from calcium cross-linked gellan gum and genipin cross-linked gelatin. The ratio of the two polymers and the cross-linker concentrations significantly affected the mechanical characteristics of the hydrogels. Hydrogels with optimized composition exhibited compressive fracture stress and work of extension values of up to 1.1 ± 0.2 MPa and 230 ± 40 kJ m−3 for swelling ratios of 37.4 ± 0.6 and 19 ± 1, respectively. The compressive and tensile mechanical properties, swelling behavior (including leachage), pH sensitivity and homogeneity are discussed in detail. Fully swollen hydrogels (swelling ratio of 37.4 ± 0.6) were able to recover 95 ± 2% and 82 ± 7% of their energy dissipation (hysteresis) at 37 °C after reloading to either constant stress (150 kPa) or constant strain (50%), respectively. Disciplines Medicine and Health Sciences | Social and Behavioral Sciences Publication Details Kirchmajer, D. M. & in het Panhuis, M. (2014). Robust biopolymer based ionic-covalent entanglement hydrogels with reversible mechanical behaviour. Journal of Materials Chemistry B, 2 (29), 4694-4702. This journal article is available at Research Online: http://ro.uow.edu.au/smhpapers/2391 Robust biopolymer based ionic-covalent entanglement hydrogels with reversible mechanical behaviour. Damian M. Kirchmajer and Marc in het Panhuis*, Emerging applications of hydrogels such as soft robotics and cartilage tissue scaffolds require hydrogels with enhanced mechanical performance. We report the development of a robust biopolymer based ionic-covalent entanglement network hydrogel made from calcium cross-linked gellan gum and genipin cross-linked gelatin. The ratio of the two polymers and the cross-linker concentrations significantly affected the mechanical characteristics of the hydrogels. Hydrogels with optimized composition exhibited compressive fracture stress and work of extension values of up to 1.1 ± 0.2 MPa and 230 ± 40 kJ.m for swelling ratios of 37.4 ± 0.6 and 19 ± 1, respectively. The compressive and tensile mechanical properties, swelling behavior (including leachage), pH sensitivity and homogeneity are discussed in detail. Fully swollen hydrogels (swelling ratio of 37.4 ± 0.6) were able to recover 95 ± 2% and 82 ± 7% of their energy dissipation (hysteresis) at 37 °C after reloading to either constant stress (150 kPa) or constant strain (50%), respectively.
منابع مشابه
Reinforcing biopolymer hydrogels with ionic-covalent entanglement hydrogel microspheres
Microscopic hydrogel spheres can be used to improve the mechanical properties of conventional hydrogels. We prepared ionic-covalent entanglement (ICE) hydrogel microspheres of calcium cross-linked gellan gum and genipin cross-linked gelatin using a water-in-oil emulsion-based processing technique. The method was optimized to produce microspheres with number average diameter 4 ± 1 μm. These ICE ...
متن کاملStrong tough gels for 3D tissue constructs
The mechanical characteristics of ionic-covalent entanglement hydrogels consisting of combinations of the biopolymers gellan gum and kappa-carrageenan, and the synthetic polymers polyacrylamide and an epoxy amine were investigated. Compression testing showed that these gels exhibited "double network" behavior, i.e. strong tough gels.
متن کاملSelf-Healing Supramolecular Hydrogels Based on Reversible Physical Interactions
Dynamic and reversible polymer networks capable of self-healing, i.e., restoring their mechanical properties after deformation and failure, are gaining increasing research interest, as there is a continuous need towards extending the lifetime and improving the safety and performance of materials particularly in biomedical applications. Hydrogels are versatile materials that may allow self-heali...
متن کاملStiff, strong, and tough hydrogels with good chemical stability
Recent developments in the area of hydrogels promise to greatly expand their scope of applications. Many applications require hydrogels to endure signicant mechanical loads in aggressive environments. Examples range from biomedical applications such as articial cartilage in tissue engineering, to engineering applications such as swellable packers in the oil industry, or articial nerves and m...
متن کاملDevelopment of a Gastroretentive Drug Delivery System based on Superporous Hydrogel
Purpose: The aim of this work was to synthesize superporous hydrogels of rosiglitazone using chitosan and to study its swelling behaviour for application as a gastroretentive drug delivery system. Methods: Chitosan superporous hydrogels were synthesized using glyoxal as a crosslinking agent by gas blowing method. The effect of pH and ionic strength on the swelling ratio was determined. Swelling...
متن کامل